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Abstract When performing visual servoing or object track-
ing tasks, active sensor planning is essential to keep tar-
gets in sight or to relocate them when missing. In particu-
lar, when dealing with a known target missing from the sen-
sor’s field of view, we propose using prior knowledge related
to contextual information to estimate its possible location.
To this end, this study proposes a Dynamic Bayesian Net-
work that uses contextual information to effectively search
for targets. Monte Carlo particle filtering is employed to ap-
proximate the posterior probability of the target’s state, from
which uncertainty is defined. We define the robot’s utility
function via information theoretic formalism as seeking the
optimal action which reduces uncertainty of a task, prompt-
ing robot agents to investigate the location where the tar-
get most likely might exist. Using a context state model,
we design the agent’s high-level decision framework using
a Partially-Observable Markov Decision Process. Based on
the estimated belief state of the context via sequential ob-
servations, the robot’s navigation actions are determined to
conduct exploratory and detection tasks. By using this multi-
modal context model, our agent can effectively handle basic
dynamic events, such as obstruction of targets or their ab-
sence from the field of view. We implement and demonstrate
these capabilities on a mobile robot in real-time.
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1 Introduction

This paper addresses visual-based active object tracking
using mobile sensor platforms. Recently, low cost vision
sensors and object detection algorithms have been broadly
available Redmon et al. (2016), upping the development of
new object tracking capabilities. Visual information of ob-
jects can easily incorporate semantic information of known
targets to resolve ambiguity related to data association
in cluttered environments Makris et al. (2011). However,
vision-based object tracking suffers from occlusion from
overlapping objects, or missing targets from the field of view
(FOV) Xiang et al. (2015) Yun et al. (2017). Although many
researchers have investigated approaches to change camera
states in order to keep tracking targets in sight, there is lit-
tle work to solve the problem of long-term occlusions or
missing targets in crowded scenes. Therefore, the focus of
previous research has shifted from passive to active percep-
tion approaches (sensing) to handle more dynamic environ-
ments Kaelbling and Lozano-Pérez (2012) Eidenberger et al.
(2009b).

Bajcsy firstly described active perception as “a problem
of controlling strategies applied to the data acquisition pro-
cess which depends on the current state of the data inter-
pretation and the task of the process” Bajcsy (1988). Sim-
ilarly, this paper proposes an active perception framework
that seeks optimal control inputs that reduce target uncer-
tainty based on information theoretic costs Eidenberger et al.
(2009a). Information theoretic approaches have been widely
used in state-estimation and control of mobile sensor sys-
tems such as mapping Charrow et al. (2015) Julian et al.
(2014), Simultaneous localization and mapping (SLAM)
Valencia and Andrade-Cetto (2018), or object pose estima-
tion Wu et al. (2015). Related to our work, Ryan and Hedrick
(2010) uses Bayesian estimation and information theoretic
cost to reduce uncertainty of target locations.
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Fig. 1 The proposed Markov Decision Process: incorporating domain
knowledge (context model).

Object tracking with Bayesian estimation lacks support
for dealing with the absence of targets since direct measure-
ments might not be available. In such situations, we convert
the tracking problem into an object search problem. Object
search can be solved by finding the most informative actions
to re-locate lost targets. Since there is no direct observation
of an object, we aim to obtain an optimal action policy based
on the probabilistic belief of possible target locations.

Bourgault et al. (2003) investigated optimal search
strategies to minimize the expected time to find lost tar-
gets within probabilistic frameworks. Other probabilistic
formulations for object search have been considered such as
Bertuccelli and How (2006), Lau et al. (2006), and Chung
and Burdick (2012). Most of these methods reduce the
search space using a discrete-grid world or graphical struc-
ture, since computing the optimal search actions with un-
certainty is known to be an NP-hard problem Tseng and
Mettler (2017). Reformulating optimal search by reducing
the search space mitigates the computational burden. How-
ever, these methods do not deal with dynamic situations
such as occlusions or missing targets. Other works have
shown progress recovering missing targets such as Radmard
and Croft (2017) or Radmard et al. (2018). In addition, an
occlusion-aware planning strategy for multiple robots has
been studied using an information theoretic approach Haus-
man et al. (2016).

Inferring the possible location of targets draws inspi-
ration from human perceptual capabilities Aydemir et al.
(2013). Our research proposes estimating possible target lo-
cations based on predicted context information. By using
prior knowledge of the target’s surrounding context or past
experience of the sensing process, the quality of a target’s
prediction can be improved significantly. From this perspec-
tive, providing context information to a state estimator is
strongly desirable Denzler and Brown (2002) Kaelbling and
Lozano-Pérez (2013). The main challenge with this concept
is that this estimation framework needs to be formulated so
that it can be used simultaneously to address tracking and
searching of objects. To resolve this difficulty, this study
proposes to bridge context (domain knowledge) and target

Table 1 Nomenclature

Symbol description
x target states
q robot (sensor) state configurations
u robot inputs
c context states
z measurement of target states

Θ measurement of context states

estimation using tools such as Dynamic Bayesian Networks
(DBN) and particle filters.

We estimate context states using probabilistic beliefs.
Computing an optimal action over the belief space can be
formulated as a Partially-Observable Markov Decision Pro-
cess (POMDP). There exist approximate solutions for low
dimensional systems Porta et al. (2006) and locally opti-
mal solutions for continuous state and action spaces Van
Den Berg et al. (2012) Bai et al. (2014). However, similarly
to Sridharan et al. (2010) Li et al. (2016) we limit the use of
POMDP to high-level planning in order to achieve real-time
performance.

By estimating their context, our robots can take optimal
decisions based on increasing the information gain. For ex-
ample, when a target object is present, our robot will attempt
to keep targets in its FOV by controlling its head or mobile
base. When an occlusion occurs, our robot will move to the
optimal sensor configuration obtained by solving the alluded
information theoretical control problem. In addition, when
targets suddenly disappear, our robot will search for them
based on context information. For our study, we assume that
objects can not move by themselves but only by nearby peo-
ple. With this assumption, our robot’s logical action is to find
targets near observed people. When no person is present, our
robot will start exploring the area around it to locate people.

In summary, the main contributions of this work are
1) devising a probabilistic framework for leveraging con-
text information with DBN for active object tracking, 2)
using POMDP to achieve high-level decision-making us-
ing information-theoretic costs, which we approximate us-
ing particle filters, and 3) integrating a realistic demonstra-
tion with a mobile robot for validating the newly defined
capabilities.

2 State Estimation

2.1 Bayesian Filtering: Active Object Tracking

Bayesian filtering is a great tool to estimate the state of
dynamic systems recursively in a probabilistic manner.
This approach attempts to construct the posterior proba-
bility of a state based on a sequence of observations. In
general, an active object tracking problem (object track-
ing with active sensing) can be formulated with a set of
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models: motion transition model p(xk|xk−1), sensor (robot)
motion model p(qk|qk−1,uk−1), and measurement model
p(zk|xk,qk), where xk ∈ ℜ3, qk, uk, and zk are target states,
sensor (robot) states, control inputs, and observations at
time step k, respectively. In this study, a target state is de-
scribed as the 3D position of an object, and qk denotes
the robot’s base and its camera’s configuration, namely,
qk = (x,y,θ ,qtilt ,qpan). Here, a sensor motion model is the
probabilistic form of the robot’s forward dynamics, which
assumes that qk+1 is observable. In addition, zk is the de-
tection output through an object recognition algorithm and
point cloud processing, encoding the 3D position of the ob-
served targets.

The goal of filtering is to estimate the target state x at
time k, namely, the posterior distribution, using the a priori
estimate (prediction step) and the current measurement of
the sensor (update step). Assuming that the prior probability
p(xk−1|z1:k−1) is available at time k− 1, the prediction step
attempts to estimate P(xk|z1:k−1) from previous observations
as follows:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (1)

where p(xk|xk−1) is the target’s motion model based on a
first order Markov process. Then, when the measurement zk
is available, given sensor configuration qk at time k, the es-
timated state can be updated as

p(xk|z1:k) =
p(zk|xk,qk)p(xk|z1:k−1)

p(zk|z1:k−1,qk)
, (2)

where p(zk|z1:k−1,qk) =
∫

p(zk|xk,qk)p(xk|zk−1)dxk. For the
update step, the measurement zk is used to modify the prior
estimate, leading to obtaining the posterior distribution of
the current state. Finally, after calculating the target’s belief
state p(xk|zk), the goal of active sensing is to provide optimal
sensor control inputs to track the target or to find it if its lost.

2.2 Context Modeling

In general, for object tracking, a transition model is assumed
to be known based on a constant velocity model hypoth-
esis with white noise, i.e. P(xt |xk−1) = xk−1 + vk−1∆ t + ν

where ν represents white noise. However, this approach is
inefficient in active object tracking since targets might be
frequently missing, meaning that vk is unavailable. Thus, in-
spired by how humans seem to track objects, it would be
beneficial to understand the current situational context in or-
der to effectively estimate possible locations of lost targets.
To leverage this abstract knowledge or context, we employ a
Dynamic Bayesian Network model to infer the possible state
of targets. Consequently, when an agent begins looking for
a missing target it will benefit by knowing the belief state of
the context and trying to find it based on such information.

xk-1

zk-1

ck-1

yk-1

time axis
Fig. 2 Dynamic Bayesian Network with context states (ck), target
states (xk), and robot configurations (qk). yk and zk are measurements
for context and targets, respectively. The arrows indicate the condi-
tional dependencies between the random variables. The dotted line in-
dicates that when an object is missing, it’s target location cannot be
directly estimated. In our case, it is inferred from context information.

2.2.1 Dynamic Bayesian Networks

DBN is an extension of Bayesian Networks, a graph model
for representing causal relations and conditional dependen-
cies, for temporal processes, which can evolve over time.
The proposed model is shown in Fig. 2, where ck denotes
the context state at time step k, and yk is the observation of
the context state. Since target states can depend on context
states, this model can be directly applied to Bayesian fil-
tering as a transition model for prediction. In other words,
instead of using p(xk|xk−1), we propose to use p(xk|ck−1) as
the motion model, i.e.

p(xk|z1:k−1)≈
∫

p(xk|ck−1)p(xk−1|z1:k−1)dxk−1, (3)

In this sense, target states can be predicted using context
states, which in turn can be estimated using context transi-
tion models and context measurements.

2.2.2 Hybrid Motion Model

More precisely, the target transition model can be reformu-
lated using context states as

p(xk|ck−1) =
∫

p(xk|ck)p(ck|ck−1)dxk. (4)

Here, we assume that p(ck|ck−1) is known (this will be ex-
plained in section 3.4.3). Furthermore, if the set of possible
context states is finite, the posterior distribution of xk can be
calculated as

p(xk|ck−1) =
N

∑
i=1

p(ci
k)p(xk|ci

k), (5)

where ci
k denotes the i-th context state at time k and N is

the cardinality of the set of context states. If each context
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ck is described using a Gaussian model, the posterior dis-
tribution becomes a Gaussian Mixture Model (GMM). As
such, the probability density of the GMM is equivalent to
the weighted sum of all components, i.e.

p(xk|ck−1) =
N

∑
i=1

p(ci
k)N (xk; µi,Σi), (6)

where N is the multivariate Gaussian model with mean vec-
tor µ and co-variance matrix Σ . Here, each µi and Σi repre-
sent the mean target location given the i-th context and its
variance.

2.3 Particle Filter

We approximate the posterior distribution p(xk|z1:k) by a set
of N number of particles {xk,wk}N , where wk is the corre-
sponding weight of the particle xk at time step k. Generally,
the weighted approximation is calculated as

p(xk|z1:k)≈
N

∑
i=1

wi
kδ (xk− xi

k), (7)

where particles xi
k are drawn from a proposal density

q(x0:k|z1:k) and the weight of the particles is updated using
importance sampling. The normalized weight of the i-th par-
ticle can be defined as

wi
k =

p(xi
0:k|z1:k)

q(xi
0:k|z1:k)

. (8)

Assuming the Markov property, the proposal density can
be decomposed into the prior proposal density and the prop-
agated density as

q(x0:k|z1:k) = q(xk|xk−1,z1:k)q(x0:k−1|z1:k−1). (9)

Thus, this equality yields

wi
k =

p(zk|xi
k)p(xi

k|xk−1)p(xi
0:k−1|z1:k−1)

q(xi
k|xi

k−1,z1:k)q(xi
0:k−1|z1:k−1)

(10)

=
p(zk|xi

k)p(xi
k|xk−1)

q(xi
k|xi

k−1,z1:k)
wi

k−1 (11)

Here, a common choice for q(xi
k|xi

0:k−1,z1:k) is the mo-
tion model p(xk|xk−1), which minimizes the variance of
p(x|z). Also, as mentioned before, in the above equations
we use Eq. (5) to estimate the process p(xi

k|xk−1). Based on
Bayesian filtering, at every time step k, these weights can be
recursively updated from the time step k−1,

wi
k = wi

k−1
p(zk|xi

k,qk)

∑
N
j=1 p(zk|x j

k,qk)
. (12)

2.4 Sensor Model

The sensor model, p(x|z,q), has the form of a joint distri-
bution for z, x, and q. This model must consider the case
of an empty measurement set (i.e. when the target is miss-
ing). In addition, the sensor model depends on whether the
target is within the FOV or not. The FOV can be formu-
lated as a function of q, f (q), given the robot’s configuration
Freda et al. (2008). For an RGB-D camera, f (q) has a cone
shape with center c(q), opening angle α , and radius R. These
parameters are later determined based on real-world sensor
specifications. In this study, the sensor model is defined as

p(z = /0|x,q) = 1− pe if x 6⊂ f (q)

p(z = /0|x,q) = 1− pd if x⊂ f (q)

p(z 6= /0|x,q) = pe if x 6⊂ f (q)

p(z 6= /0|x,q) = pdN (z;x,Σ 2) if x⊂ f (q)

(13)

where pd is a user-defined true positive probability of the
detection algorithm and pe is the false negative probability
(e stands for error).

2.5 Importance Sampling

Typically, sequential sensor observations are used to up-
date weights of particles and compute the resulting proba-
bility distributions. However, for our active object tracking
problem, continuous sensor readings are not always avail-
able due to frequently missing targets from occlusion or dis-
appearance. We use another method to update the impor-
tance of particles in the FOV as a result of missing the tar-
get. The weight of particles in the field of view (S2(q) in
Fig. 3) should be lowered. However, it is impossible to up-
date the precise weights of the particles outside the FOV
(S1(q)) without additional information about the target when
it is missing. Instead we use the value 1-pe for updating the
weights of the particles in S1(q).

However, due to importance sampling, the number of
particles in S2(q) reduces significantly due to having neg-
ligible weights. This phenomenon is called the degener-
acy problem. To avoid it, we use a re-sampling method in
which new particles are generated in S1(q) corresponding
to the ones lost in S2(q). In this case, the weights are set
to wi

k−1 =
1

Ns
, and after updating, they are set to the sensor

likelihood, wi
k ∝ p(zk|xi

k,qk).

3 Methods

3.1 Entropy to Reduce Uncertainty

The goal of active perception is to gather as much infor-
mation as possible, or equivalently to reduce uncertainty.
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Fig. 3 An illustration of our problem, including the robot’s FOV, a tar-
get object, and its environment. The target (purple circle) is occluded
by the pink object so that it cannot be detected by the robot. We sep-
arate particles into two sets, S1(q) and S2(q), based on their visibility
by the robot.

Shannon’s entropy is defined as measuring the uncertainty
of a random variable. For our problem, the desired control
actions (i.e. moving the robot to a new configuration) cor-
respond to policies that reduce uncertainty the most. Using
the target’s posterior distribution, p(z|x), its entropy is rep-
resented as

H(p(x|z,q)) =
∫

x∈X
−p(x|z,q)logp(x|z,q)dx. (14)

Using eq. (7), the entropy can be approximated by the
particle weights as

H(p(x|z,q)) =−
N

∑
i

wi logwi (15)

The full set of particle weights Ω can be divided into
two sets (S1(qk), S2(qk)) based on the FOV of the sensor
f (qk). Here S1 denotes the set of particles within the FOV,
while S2 is the set of particles that are not included in the
FOV. Note that the region defined by S1(q) does not belong
to f (qk) since it is occluded. Mathematically, S1 = {wi ∈Ω :
xi /∈ f (qk)} and is disjointed from S2, i.e. S2 = Ω \S1). As a
result, the entropy equation can be expressed as

H(p(xk|zk,qk))≈−∑
i∈S1

wi logwi− ∑
j∈S2

w j logw j. (16)

The expected information gain (IG) only depends on the
first term of the above equation, and thus can be written as

IG(qk) =−E[H(xk−1|zk−1,qk−1)−H(p(xk−1|zk−1,qk))]

≈ ∑
i∈S1(qk)

wi logwi.

(17)

3.2 Utility Function For Target Detection

The first term of our utility function is the information gain,
which involves the amount of information that can be ob-
tained given sampled configurations. The second term pe-
nalizes traveling cost. Lastly, we define a perception gain
that assists the robot to approach targets to increase the qual-
ity of the sensing process. Mathematically, the cost function
is described as

J(xk,qk−1,qk) = IG−ζtravel−ζperception (18)

ζtravel = β (qk−qk−1)
T Q(qk−qk−1) (19)

ζperception = γ(xk−Sd qk)
T (xk−Sd qk). (20)

Here xk is the estimated position of the target at time k, qk−1
is the current robot configuration, qk are sampled robot con-
figurations, β , γ are cost weighting factors, and Sd is a map-
ping that extracts the Cartesian position of the robot from its
position-rotation configuration. Solving this cost yields,

q∗k = argmaxJ(xk,qk−1,qk) (21)

To solve this problem we use a sampling based approach and
greedy search to obtain the final result, q∗k .

3.3 POMDP High-level Planner

For our decision framework, we will estimate the current
context and based on it choose actions to increase rewards.
Since context cannot be directly measured, our planner is
formulated as a Partially-Observable Markov Decision Pro-
cess (POMDP). A POMDP can be described by the tuple
(S, I,A,Z,T,R), a finite set of states S = {s1, · · ·s|S|}, an ini-
tial probability distribution over these states I, a finite set
of actions A = {a1, · · ·a|A|}, a finite set of observations Z =

{o1, · · ·o|Z|}, and a transition function T (s,a,s′) = P(s′|s,a)
that maps S×A into discrete probability distributions over
S. In detail, a transition model T (s,a,s′) specifies the con-
ditional probability distribution of shifting from state s to
s′ by applying action a. Z(s′,a,o) = P(o|s,a) is the observa-
tion mapping that computes the probability of observing o in
state s′ when executing action a. R = r(s′,a,s) is the reward
function.

A POMDP is equivalent to a continuous-state Markov
Decision Process where the states are believes, also called
a belief MDP Krishnamurthy (2016). Thus a state can be
rewritten using belief states b(s) = p(s), defined as the pos-
terior distribution over all possible states given the history of
actions and observations. For our purposes, the states will be
the context situations. In the vein of Eqs. (1) and (2), using
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Bayesian formulation belief states can be represented recur-
sively as follows:

bk(s|ak−1) = ∑
s′∈S

T (s,ak−1,s′)bk−1(s) (22)

bk(s|ak−1,ok) = ηZ(s,ak−1,ok)bk(s|ak−1), (23)

where η is a normalizing constant. The goal of the POMDP
is to select a sequence of actions over time to maximize the
expected cumulative reward. Value iteration algorithms are
used for optimally solving POMDPs. This strategy can be
defined as a policy π∗, which maps a belief b to actions.
Given policy π , a belief b(s) ∈ B, the value function can be
computed via the Bellman equation as

V (b,π) = ρ(b,π(b))+ γ ∑
b′∈B

τ(b,π,b′)V (b′,π), (24)

where γ is a discount factor, ρ is the expected reward, and τ

is the transition probability to b′ from b under π , which can
be computed as Ross et al. (2008)

τ(b,π,b′) = ∑
o∈Z

p(b′|b,π,o) p(o|b,π). (25)

The best policy π∗ is obtained by solving the optimization
problem:

π
∗(b) = argmaxV (bk,πk). (26)

In this paper, we utilize an on-line POMDP solver, the De-
terminized Sparse Partially Observable Tree (DESPOT) So-
mani et al. (2013), to obtain the optimal action policy based
on the current belief of context states.

3.4 POMDP Problem Formulation

3.4.1 States

We define context states as one of the following semanti-
cally grounded symbols {Visible, Occluded, Disappearance,
Irrecoverable}, some of which cannot be measured directly
by sensors. Visible is the state in which the target can be di-
rectly measured by the robot’s sensors. Occluded is the state
when the target has been occluded by another object but is
believed to be behind it. Disappearance is the state in which
the target is not directly visible by the robot and is not be-
lieved to be occluded by another object in the robot’s field of
view. In this state, the target is believed to have been moved
away by a person. Finally, Irrecoverable corresponds to the
case when the robot does not have information about the
whereabouts of the target nor it can use context information
to find it.

Search

Action
Success

Failure

Fig. 4 POMDP problem formulation for object tracking. The actions
are Search, Track, and Active Move. The states are shaded in gray.
When actions don’t result on finding the target, i.e. Visible state, we
consider that action to Fail. Otherwise it’s a Success.

3.4.2 Actions

Our action set is defined as A = { Track, Search, Active
Move}. The Track action commands the robot to track tar-
gets by panning its head. Active Move prompts the robot to
change its location to better track a visible target or to over-
come Occlusion situations where the taregs is believed to be
behind another object. Lastly Search prompts the robot to
explore its environment in search of humans by turning its
head. This action corresponds to the hypothesis that when an
object is missing it might be around a human therefore find-
ing humans might reveal the target. In addition, we search
for humans instead of directly searching for the target, since
people are larger and easier to spot from afar.

3.4.3 Transitions

We define a transition model to estimate the next context
state based on the available actions, i.e. p(ck|ck−1) as de-
fined in Equation (23). We remark that context updates are
performed at asynchronous time frames since actions take
more than one time step to complete. Accordingly, we de-
fine transitions as:

p(cl |cl−1) =

{
I if a is active

bl−1(s|al−1) if a is complete,
(27)

where l is a distinct time frame from k since transitions
among context states are determined based on the execu-
tion time of high-level actions. Transitions between context
states are described in Fig. 4.

3.4.4 Observations

To estimate hidden context states, we rely on four features.
The most useful feature is whether a target observation ex-
ists or not. If zk is non-empty, the context state might be
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visible with high probability. Thus, the first feature variable
is defined as θTarget = 1 if zk exists, otherwise, θTarget = 0.

The second feature we consider reflects the probability
of occlusions to occur, and can be computed by using exist-
ing object recognition algorithms. Once an occlusion occurs,
the object being tracked will be occluded by another object
(both of them represented by bounding boxes traced by the
object recognition software). In the case that objects causing
occlusions are semantically identifiable, an overlap ratio is
defined based on the two bounding boxes (the object being
tracked, i, and the newly occluding object, j) as

ORi j
k =

BB j
k ∩BBi

k−1

BBi
k−1

, (28)

where BBi
k denotes the bounding box for object i at time in-

dex k. We define a feature θ i
OR ∈ {0,1} as the rule (ORi j >

λOR)∩(z= /0) where λOR is a predefined threshold and z= /0
denotes the absence of a target. In the case that the occlud-
ing object is unidentifiable, the depth variance can also be
used to detect the occlusion. Note that the depth within the
bounding box will become smaller when a new object starts
occluding the previous one. Therefore, features affected by
depth variation can be formulated as

∆Zi
k = Z̄i

k−∆T :k−Z j
k , (29)

where Z̄i
k−∆T :k =

1
∆T ∑

k
k−∆T Zi denotes the average depth for

time period ∆T within BBi, and Z j
k stands for the newly de-

tected depth value (i.e. the occluding object) for the same
region. Thus, we define a feature variable for depth infor-
mation as follows

θ
i
Depth =

{
1
(
∆Zi

t > λdepth ∩ z = /0
)

0 otherwise.
. (30)

Lastly, the loss of a target can also be inferred based on
the premise that the main cause of its disappearance is a hu-
man taken it away. This assumption seemingly makes sense
since most common objects cannot change their location by
themselves. Accordingly, we define a new feature associate
with the presence of a human as, θHuman = 1 if a human is
present. In practice, we detect humans by using the object
recognition algorithm Redmon et al. (2016).

Consequently, the observation model is expressed using
the feature vector

Θ(a) := (θTarget(a),θOR(a),θDepth(a),θHuman(a)). (31)

By detecting features, we estimate the context state using
the likelihood distribution p(o|s,a)≈ p(Θ |s) = Π 4

i=1 p(θi|s)
which relies on the assumption that each feature is condi-
tionally independent.

3.4.5 Rewards

We assign positive rewards only when the context state is
visible. Otherwise we don’t give any reward. As such, we
compute the expected reward ρ(·) using belief the belief
state b(s) and the reward function r(s,a) as

ρ(b(s),a) = ∑
s

b(s)r(s,a) (32)

r(s,a) =

{
10 if s is Visible

0 Oterwise

}
. (33)

3.5 Context Models

As indicated in Equation (6), each context state has its own
prediction model regarding the target’s location given prior
knowledge.

3.5.1 Visible Context

In this case, we predict the target’s position from the last
target state xk−1 using a Gaussian distribution, i.e.

p(xk|c = visible)≈N (xk;xk−1 + vk−1∆ t,σ2
x ) (34)

where σ2
x is the sensor noise.

3.5.2 Occluded Context

In this case, we estimate the target’s position from the fact
that is behind the occluding object’s position, xocc, i.e.

p(xk|c = Occluded)≈N (xk;xocc +δoffset,σ
2
occ), (35)

where δo f f set is an approximate distance value such as the
length of the bounding box describing the occluding object.

3.5.3 Disappearance Context

In this state, the position of the target is inferred from knowl-
edge about nearby people. If no one is visible in the FOV,
the robot will begin to look for nearby people by rotating
its base and head using the search action. Once a person
has been detected, a prediction model will generate particles
based on the following model,

p(xk|c = Disappearance)≈N (xk;xhuman,σ
2
human). (36)
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Fig. 5 Example resolving an occlusion event and leading to re-locating the target. (a) The robot is tracking a target object (a bottle) using its
cameras. (b) an occlusion suddenly occurs (e.g. a person has placed a box in front of the bottle); an occluding marker (a purple ball in the figure)
is placed in the computer visualization window in front of the target. (c) Using our proposed active sensing method, the robot chooses its next
configuration (shown as a big red arrow) in order to maximize its information gain, which is approximated by particles. (d) For this example, the
robot finally succeeds to re-locate the target behind the occluding object.
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Fig. 6 Time analysis for an example scenario of active object tracking.
The first row shows the estimated distance between the robot and the
target object. The second row shows the estimated context state (red
line: visible, blue line: Occluded, and green line: Disappearance). The
third row provides the chosen actions at each time frame.

4 Experimental Results

4.1 Robot Description

To validate our approach experimentally, we use the Toy-
ota Human Support Robot (HSR), a mobile manipulator
equipped with an omnidirectional mobile base and a pan-
ning and tilting head. A depth camera (Xtion, Asus) is lo-
cated on top of the robot’s head to obtain an RGB-D stream.
A laser range scanner, Hokuyo, is installed at the front bot-
tom of the base in order to detect static and dynamic obsta-
cles. The HSR uses two different computers, one Intel Core
i7, 4th Gen with 16GB RAM is used for basic navigation
functions of the robot and another one, an Alienware Intel
Core i7-7820HK, GTX 1080 laptop, is used for running the
object and human detection algorithm, named YOLO Red-

mon et al. (2016). Interprocess communications are handled
with ROS. The testing facility is the UT Austin’s Human
Centered Robotics Lab.

4.2 Scenarios

We deal with three possible situations: 1) occlusions oc-
cur due to the interference of another object, 2) objects
disappear when they are taken away by people, and 3)
objects temporarily move outside of the FOV but can be
quickly found by employing active tracking. Fig. 5 shows
that the robot is able to track and resolve occlusion situations
through searching for new configurations and successfully
re-locating the target. In addition, the examples demonstrat-
ing the second and third cases above are shown in Fig. 7.
Details can be found in Fig. 6. This figure provides the evo-
lution of the estimated context states and the corresponding
high-level actions taken over time based on context states.

4.3 Performance Evaluation

We propose four criteria to evaluate performance: Success
Ratio (SR), Tracking Ratio (TR), Average Restoring Time
(ART), and Failure Time (FT). Each criterion is evaluated
over 20 trials until the robot fails to track the target. The
statistical results are shown in Table 2.

4.3.1 Success Ratio (SR)

Success ratio given an action represents the number of suc-
cessful target re-locations versus the total number of trials.
In our experiments, we achieved an overall success rate of
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Fig. 7 Demo showcasing finding a target when it suddenly disappears from the robot’s FOV and is not believed to be occluded by another object.
(a) Initially, the robot tracks the target (a bottle) using its depth cameras. (b) The target suddenly disappears from its FOV; here it is believed the
target has disappeared because of the information returned from the observation model described earlier. (c) The robot moves to find a person
around its neighborhood. If a person is detected, the robot navigates to that person and attempts to locate the target nearby. (d) In our demo, the
robot succeeds in re-locating the object since it was placed next to the person.

Track Search

0.7

0.9

0.8

0.88

0.82

0.74

Active Move

Fig. 8 Success ratio for various active sensing scenarios. The rates
represent the ratio of success to track or find a target after action exe-
cution depending on believed context states. Track behaviors have the
highest success rates, 0.88, followed by Active Move, while search has
the highest variance and the lowest success rates, 0.74.

0.82 with standard deviation equal to 0.097 despite the con-
ditions being highly dynamic (i.e. the target is moving or
occluded or has suddenly disappear). The success ratio case
is shown for each context and action being taken in Fig. 8.

4.3.2 Tracking Ratio (TR)

This ratio can be regarded as keeping the target in the FOV.
It is calculated using the amount of time the target is be-
lieved to be in the visible state versus the total time an ex-
periment lasts. We achieved an average TR value of 0.7 for
the demos above, i.e. a mixture of experiments where we
repeatedly occluded the target, or a person moved it away
to nearby locations outside of the robot’s FOV, or a person
rapidly moved the target around the robot.

Table 2 Four Criteria results

Criterion Mean Standard Deviation
SR 0.82 0.097
TR 0.71 0.096

ART (s) 10.22 7.9
FT (s) 232 44.2

4.3.3 Average Restoring Time (ART)

This time is calculated as the differential of time between
loosing sight of a target until it is re-located. It varies de-
pending on the type of action. For example, the average
restoring time for Track was 2 seconds while that for Active-
Move was 12.15 seconds with a standard deviation of 3.95.
Lastly, the ART for Search was 16.5 seconds with standard
deviation of 7.8.

4.3.4 Failure Time (FT)

Lastly, we measure the amount of time it takes the robot to
fail tracking or searching targets. If the target is not found
within 1 minute, the robot will go into failure mode, i.e. the
context state is irrecoverable. The experiment for this mea-
surement is done based on an arbitrary mixture of context
states performed by moving the target around or occluding
it. The overall FT for our action sequence is 232 seconds
with standard deviation of 44.2 seconds. This indicates that
the proposed algorithm performs successful target tracking
and searching tasks for approximately 4 minutes before be-
coming irrecoverable due to arbitrary user manipulations.
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5 Concluding Remarks

This paper addresses active target tracking and searching ca-
pabilities using mobile robots. Experimental results are per-
formed using multiple scene trials. To this point, we em-
ploy information-theoretic costs for active search. Integrat-
ing a DBN model, particle filtering and POMDP planning,
we are able not only to infer target locations from context
information in a probabilistic manner, but also to define cost
functions effectively. Obtaining the desirable control inputs
for gathering information allows our robot to have better
tracking and search capabilities under several dynamic con-
ditions, such as occlusions and the sudden disappearance of
a target.

We highlight the following achievements. First, our
methods are scalable and versatile via the proposed hybrid
state estimator, i.e. the particle filter plus POMDP based on
context states. To this point, the action sequence shown in
Fig. 6 effectively demonstrates the robot’s capability to ac-
tively find occluded or missing targets under various dy-
namic conditions. Second, as shown in Fig. 8, our active
sensing algorithm, on average, re-locates targets with high
success rates. Finally, we have verified robustness and effi-
ciency of our methods using the proposed criteria, SR, TR,
ART, and FT. In essence, we verified that the robot can per-
form practical tracking and search tasks while operating in
dynamic environments.

There are limitations to our approach. Better probabilis-
tic models are required to model realistic target search situ-
ations. For example, our current method assumes that direct
transitions between occlusion and disappearance states do
not happen. Furthermore, to deal with more realistic situ-
ations, a memory-based approach that uses historical data
should be used to predict context. Recurrent Neural Net-
works might be a good solution for future work. Lastly, there
exists a room for extending our proposed work to multi ob-
ject tracking cases.

Overall, this work demonstrates a prototype of robust au-
tonomous active target tracking performed using a mobile
robot in a practical setup.
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