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navigation, task scheduling, and human interac-
tion. In particular, mapping, localization, and 
navigation have attracted considerable attention. 
Although researchers have proposed many such 
algorithms and map representations, instances of 
real-world, autonomous long-term deployments 
of robots to test them in the real world are rare. 
(See the sidebar, “Related Work in Service Mobile 
Robots,” for examples.) This article presents tech-
nical insights and qualitative and quantitative re-
sults from extensive real-world deployments of a 
team of service mobile robots.

We have been working on our service mobile 
robots, the CoBots,1 to investigate the challenges 
in deploying a team of autonomous service mobile 
robots in a real-world offi ce building. We have 
used the CoBots to develop and demonstrate 
several localization algorithms.2–5 To demonstrate 
the robustness and accuracy of localization using 
these contributions, a few years ago, we proposed 
the 1,000-km Challenge6:

Demonstrate, on a team of deployed autonomous mobile 

robots, in multiple real-world human environments, the 

robustness and accuracy in localization over long-term 

deployments covering a total distance of more than 

1,000-km.

The 1,000-km Challenge has the following charac-
teristics:

•	 robustness and accuracy, to be able to collect 
quantitative experimental data on the robust-
ness and accuracy of the localization algorithms;

•	multiple real-world human environments, to be 
performed in real environments, so as to expose 
the localization algorithms to realistic variations;

•	 long-term deployments, to be performed over 
deployments spanning multiple years, thus ex-
posing the localization algorithms to environ-
mental variations that would normally occur 
over such a timespan; and

•	 team of autonomous robots, to be performed 
collectively by multiple robots, each with its 
own unique sensing abilities.

The 1,000-km Challenge began on 17 May 2011 
and concluded successfully on 18 November 2014. 
In this article, we focus on the real-world evalua-
tion of the localization algorithms used on the Co-
Bots over the 1,000-km Challenge and on technical 
insights into the success of the deployments. Such 
real-world deployments are invaluable in attesting 
to the effi cacy of the localization algorithms, be-
cause they provide experimental results from un-
structured, uncontrolled environments. We present 
quantitative results in two forms: sparse ground 
truth provided by artifi cial landmarks placed in the 
environment and scan matching-based evaluation 
of localization errors at uniquely identifi able loca-
tions. We further present qualitative results of 
the localization’s robustness in terms of the dis-
tribution of the logged operator interventions over 
the 1,000-km Challenge. We augment the quanti-
tative and qualitative results with technical insights 
into the strengths of the localization algorithms 
that contributed to the success of the 1,000-km 
Challenge.

The Scope of Deployments 
and Data Collected
Since September 2011, four CoBots have been au-
tonomously performing various tasks for users on 

In the pursuit of developing autonomous, per-

petually deployable service mobile robots, nu-

merous researchers have proposed algorithms for 

various subproblems, including mapping, localization,
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multiple floors of our buildings, includ-
ing escorting visitors, transporting ob-
jects, and engaging in semiautonomous 
telepresence.7 The CoBots, shown in  
Figure 1, vary in their sensing capabili-
ties. CoBots 1, 2, and 3 have a short-
range laser rangefinder, the Hokuyo 
URG-04lx. All the CoBots have one 
forward-facing depth camera, the Mi-
crosoft Kinect. CoBots 2 and 4 also 
have a second depth camera.

We deployed the robots on several 
buildings, including the Gates Hillman 
Center (GHC) and Newell-Simon Hall 
(NSH) at Carnegie Mellon University 
(CMU), and the Center for Urban Sci-

ence and Progress at New York Univer-
sity (NYU). There are 12 floors in total 
across all the buildings that the CoBots 
have been deployed on, including floors 
3 through 9 in the GHC, 1 through 4 
in the NSH, and floor 19 at NYU.

Occupants of the buildings can 
schedule tasks for the CoBots from our 
online scheduling interface.8 Addition-
ally, the robots may also be interrupted 
by bystanders, who can then schedule 
tasks on the robot directly using the 
on-board scheduling interface.9 The 
task scheduler assigns and distributes 
the user-requested tasks among the 
deployed robots, taking into account 

transfers between the robots.10 In ad-
dition to user-requested tasks, when 
the robots do not have any pending 
tasks, they perform self-assigned tasks 
commanding the robots to visit ran-
domly chosen locations along the navi-
gable paths in the buildings.

The CoBots navigate through the en-
vironment unchaperoned and largely un-
monitored. The robots exhibit symbiotic 
autonomy; they autonomously seek hu-
man assistance to perform tasks that 
involve manipulation, because the Co-
Bots do not have arms.11–13 A robot’s 
execution monitoring scripts track the 
task execution progress and email the 

Several research groups have been working on the chal-
lenges of continually deployed autonomous service 
mobile robots. Among them, there are a few instances 

of deployments in real environments. Shakey was the first 
robot to actually perform tasks in human environments by 
decomposing tasks into sequences of actions.1 Rhino was a 
robot contender at the 1994 AAAI Robot Competition and 
Exhibition.2 Minerva served as a tour guide in a Smithson-
ian museum.3 Xavier was deployed in an office building to 
perform tasks requested by users over the Web.4 The robots 
Chips, Sweetlips, and Joe Historybot were deployed as mu-
seum tour guides at the Carnegie Museum of Natural History 
in Pittsburgh.5 The PR2 robot at Willow Garage has been 
demonstrated over various milestones in which the robot had 
to navigate over 42 km and perform several manipulation 
tasks.6 The Spatio-Temporal Representation and Activities for 
Cognitive Control in Long-Term Scenarios (Strands) project 
held a week-long marathon (http://strands.acin.tuwien.ac.at/
marathon.html) to demonstrate continual deployments of a 
team of robots.7 YDreams Robotics developed and deployed 
a team of visitor assistant robots, the Santander Interac-
tive Guest Assistants (www.ydreamsrobotics.com), for the 
Santander Bank headquarters in Madrid.

In recognition of the challenges of long-term deployments 
of robots, some researchers have attempted to gather sen-
sor logs from running robots in actual environments over 
extended periods of time. A five-week experiment at Örebro 
University collected sensor logs of a robot manually driven 
around the environment thrice a day, covering 9.6 km and 
more than 100,000 laser scans.8 Another dataset, recorded at 
the University of Lincoln,9 features omni directional images 
in several settings in an office building. A small subset of the 
logs analyzed in this article was previously shared in support 
of the long-term deployments of the CoBots using Correc-
tive Gradient Refinement for localization.10 Compared to the 
related work in this area, this article presents results from 
a fully deployed autonomous robot rather than a manually 
driven one for the purpose of collecting data.

In contrast to the previous work, our work, to the best of 
our knowledge, is the first to attempt to provide quantita-
tive measures of accuracy and robustness, along with logged 
sensor data, while autonomously performing tasks in a real-
world environment. We make available the data logs gath-
ered by the robots over the deployments in the hope that 
they will prove to be useful to other researchers for inves-
tigating and testing algorithms for long-term autonomy in 
real human environments.
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administrators in the rare cases when 
it needs assistance. When required, 
CoBot developers can use the Web-
based remote monitoring and telepres-
ence interface of CoBot14 to inspect the 
state of the robot and remotely send it 
commands.

Data Collected
During every deployment, the CoBots 
log the following data streams:

•	 drive commands sent to the motors 
at 20 Hz;

•	 software exceptions (if any) from 
all nodes running on the robot;

•	 operator interventions (if any) using 
the on-board touchscreen as well as 
the remote telepresence controls on 
the website;

•	 humans detected by the depth cameras 
at 10 Hz;

•	 joystick commands received;
•	 localization estimates at 20 Hz;
•	 odometry feedback from the wheel 

encoders at 20 Hz;
•	 StarGazer observations when received;
•	 navigation status, including planned 

path and current command at 20 Hz;
•	 laser rangefinder scans at 10 Hz;

•	 obstacle scans computed using the 
depth cameras at 30 Hz; and

•	 raw depth images from the depth 
cameras, at a reduced frame rate of 
0:1 Hz.

All data streams are logged at the rates 
that they are generated, except for the 
raw depth images, which are logged 
only at a reduced frame rate of 0:1 Hz 
to keep the log file sizes manageable.

Table 1 lists the contributions to the 
1,000-km Challenge per robot. Figure 
2 shows the combined traces of all the 
locations the CoBots visited over all the 
maps. The 1,000-km Challenge has re-
sulted in the collection of more than 
168 Gbytes of compressed data logs. 
Table 2 lists the cumulative contents of 
all the logs. Complete sensor logs col-
lected by the CoBots over the 1,000-km 
Challenge are available online at www.
cs.cmu.edu/~coral/cobot/data.html.

Quantitative Results
We evaluated the error in the local-
ization estimates over the 1,000-km 
Challenge by two methods: compari-
son to scan matching and comparison 
to sparse ground truth.

Accuracy Compared to Scan 
Matching
Some locations in the environment (for 
example, corridor intersections) have 
abundant full-rank long-term map fea-
tures such that the robot’s location can 
be uniquely determined by scan match-
ing.15 We call these locations landmark 
checkpoints, and we use them to process 
the deployment logs offline and estimate 
the localization errors of the CoBots. 
The scan matching algorithm is a com-
putationally intensive operation, because 
it is evaluated over all possible locations 
and orientations in a 2 m ë 2 m search 
window at a resolution of 0.02 m and 5°.  
Therefore, the scan matching can only 
be performed offline for the evaluation 
of localization accuracy. From the de-
ployment logs, at every instant that a 
CoBot estimated that it was near a land-
mark checkpoint, the last observed laser 
rangefinder scan or depth-image obsta-
cle scan (depending on what was avail-
able on that particular CoBot) is used to 
estimate the instantaneous most proba-
ble location of the CoBot by scan match-
ing. When the robots are deployed, they 
do not slow down or stop specifically at 
the landmark checkpoints: the online 
localization and navigation algorithms 
are even unaware of the landmark 
checkpoint locations. By comparing 
the instantaneous most probable loca-
tion computed by scan matching to the  
localization estimates of the robot from 
the deployment log, we estimate the er-
ror in localization at that instant.

Table 3 lists the localization errors 
evaluated by scan matching at land-
mark checkpoints on the different 
maps. There are 167 landmark check-
points in total over all the floors. We 

Figure 1. From left to right, CoBots 1, 2, 3, and 4, which were deployed over the 
course of the 1,000-km Challenge. The CoBots’ sensing capabilities vary, ranging 
from one or more depth cameras and an optional laser rangefinder.

Table 1. Breakup of the 1,000-km 
Challenge in terms of distances 

traversed by each CoBot.

Robot Distance (km)

CoBot 1 36.6

CoBot 2 548.2

CoBot 3 205.1

CoBot 4 216.1
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omitted maps GHC3, NYU19, and 
NSH1 through NSH4 because the Co-
Bots encountered insufficient landmark 
checkpoints on those maps. Figure 3 
shows the histograms of errors in lo-
calization computed by scan matching 
at the landmark checkpoints. Figure 4 
shows, for each of the different maps, 
scatter plots of the errors of the robot 
localization estimates relative to the 
corresponding landmark checkpoints.

Accuracy Compared to Sparse 
Ground Truth
CoBots 2 and 3 are equipped with Ha-
gisonic StarGazer16 sensors, which 
detect StarGazer marker patterns 
mounted on the ceiling and provide rel-
ative locations of detected markers with 
respect to the sensor. Each StarGazer 
marker consists of four or more retro-
reflective dots arranged on a 4 ë 4 grid. 
The absence or presence of specific dots 
on the grid encodes a unique ID number 
for each marker. We have 46 StarGazer 
markers placed on the ceiling throughout 
the GHC to provide sparse ground truth 
location estimates. We tabulated the 
markers’ locations manually by measur-
ing their locations relative to nearby map 
features. Although they provide absolute 
ground truth information, the StarGazer 
markers have some limitations:

•	Because the marker locations were 
tabulated manually, they are sub-
ject to human placement and mea-
surement errors.

•	The StarGazer sensor reports ob-
served markers at 5 Hz, along with 

some processing latency. The location  
estimates of the robot would thus 
differ when the robot is moving.

•	The StarGazer sensor assumes it is al-
ways parallel to the markers, but the 
sensor would in practice tilt with the 
robot’s acceleration and deceleration.

We processed the logs from the Co-
Bots to detect time steps when they 
detected StarGazer markers, and we 
estimated the localization errors at 
those time steps by comparing the lo-
cation estimates of the robot to the 
ground truth global locations of the 

Figure 2. Combined traces of the paths the CoBots traversed over the 1,000-km 
Challenge: (from left to right, top to bottom) NYU19, GHC3, GHC4, GHC5, GHC6, 
GHC7, GHC8, GHC9, NSH1, NSH2, NSH3, and NSH4. Locations on the map are color-
coded by the frequency of visits, varying from dark blue (least frequently visited) 
to red (most frequently visited). Because the CoBots visited each floor a different 
number of times, the color scales are different for each floor.

Table 2. Cumulative totals from the data 
logs collected from all the CoBots over 

the 1,000-km Challenge.

Property Value

Duration 1,279.5 hours

Distance traversed 1,006.1 km

Deployments 3,199

Laser rangefinder 
scans

42,815,389

Depth-camera  
obstacle scans

54,932,523

Table 3. Localization accuracy evaluated by scan matching at landmark checkpoints 
for the different maps over the course of the 1,000-km Challenge.

Map Samples Mean error (m) Median error (m) Standard deviation (m)

GHC4 294 0.165 0.104 0.159

GHC5 218 0.132 0.101 0.113

GHC6 669 0.105 0.075 0.113

GHC7 6,626 0.132 0.083 0.140

GHC8 527 0.107 0.055 0.145

GHC9 806 0.136 0.080 0.164
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observed StarGazer markers. Figures 
5 and 6 show the histograms and the 
scatter plots, respectively, of the lo-
calization errors compared to sparse 
ground truth, and Table 4 lists the 
mean, median, and standard devia-
tions of errors for the different maps.

Robustness
While deployed, the CoBots log the op-
erator interventions provided. To gauge 
our localization algorithms’ real-world 
robustness, we count the number of 
times operator interventions were re-
quired to reset localization while the ro-
bot was operating autonomously. Table 5  

lists the number of times operator  
interventions were required for all de-
ployments for each map during the 
1,000-km Challenge. More than 93 
percent of the deployments proceeded 
without any localization interventions, 
and there were no deployments with 
more than three interventions.

Over the duration of the 1,000-km 
Challenge, we used Corrective Gradi-
ent Refinement (CGR) for localization 
between May 2011 and January 2014,3 
and Episodic Non-Markov Localization  
(EnML) from February 2014 on-
ward.5 Table 6 compares the mean 
distance the robot traversed between 

interventions, for each map, when us-
ing CGR, and when using EnML for 
localization. The mean distance tra-
versed between interventions is signifi-
cantly higher for EnML than for CGR, 
thus demonstrating the former’s higher 
reliability for localization in real-world 
human environments. We omitted 
maps GHC3, GHC5, NSH1, NSH2, 
NSH3, and NYU19 from this analysis 
because we have insufficient data for 
both algorithms to compare the mean 
distance between interventions.

We also logged how far the robots 
traversed autonomously before opera-
tor interventions were required. As  

Figure 3. Histogram of scan matching errors on each floor during the 1,000-km Challenge. The histogram distributions indicate 
that the localization error was less than 0.4 m on all the floors.
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Table 5 shows, 196 deployments had 
one or more deployments. We noticed 
that more than 80 percent of the in-
terventions were required shortly af-
ter the robot started moving, within 
the first 0:5 km. This is largely because 
the operator provided inaccurate local-
ization initialization at the beginning 
of the deployments. Furthermore, of 
the 26 instances where two successive 
operator interventions were required, 
more than 75 percent of the successive 
interventions happened before the ro-
bot traversed more than 0:5 km after 
the first intervention. We believe that 
this is because when an intervention is 
required, in many cases it is hard even 
for the operator to correctly reinitialize 
the robot’s location, thus requiring fur-
ther interventions shortly thereafter.

Technical Insights
In this section, we provide some tech-
nical insights into the features of the 
localization algorithms that we be-
lieve contributed to the CoBots’ ro-
bustness and accuracy in localization 
during the 1,000-km Challenge.

Vector Map Representation
The CoBots use a vector map repre-
sentation of the building’s permanent 
architectural features as a set of line 
segments.3 The vector maps are ex-
tracted from the building’s blueprints 
and intentionally omit details like the 
exact locations of movable objects, 
such as tables and chairs, which are 
likely to change over time.

Vector maps, unlike the more com-
monly used occupancy grid maps,17 

are far more compact representations. 
Furthermore, the accuracy of local-
ization when using an occupancy grid 
map is limited by the map’s cell dis-
cretization, whereas localization us-
ing vector maps does not suffer from 
such a limitation. For example, the 
GHC7 map, which measures 60 m 
× 112 m, requires 67 kibibytes (KiB) 
of memory in the vector map for-
mat, but would require 255 mebibyte 
(MiB) of memory with a resolution 
of 1 cm with 32-bit occupancy values 
per cell.

Because the vector maps do not 
include movable objects, the CoBots’ 
localization is unaffected by changes 
to the poses of the movable objects, 
such as the closing or opening of 
doors in the environment.

Figure 4. Scatter plots of localization errors evaluated by scan matching during the 1,000-km Challenge. The location bias of the 
location errors is minimal, but there is some directional bias because of the axis-aligned nature of the corridors on the map.
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Correspondence matching on the 
vector maps is performed by ana-
lytic ray casting.4 Once the analytic 
ray casting is complete, the data as-
sociation for each observed point (ei-
ther from a laser scanner or a depth 
sensor) takes O(1) time. On an occu-
pancy grid map, on the other hand, 
ray casting for each observed point 
takes O(L) time, where L is the oc-
cupancy grid map’s linear size in 
terms of number of cells. Thus, vec-
tor maps allow faster correspondence 
matching.

Vector maps result in localization 
that is faster, more memory efficient, 

and independent of any discretization 
parameter. Both CGR and EnML benefit  
from these characteristics because they  
use vector maps.

Corrective Gradient Refinement
As we empirically demonstrated,3 CGR 
has higher accuracy, as well as lower vari-
ance across trials than Monte Carlo Lo-
calization using Sampling-Importance  
Resampling (MCL-SIR) when using the 
same number of particles. This lets the 
CoBots localize with far fewer particles 
with CGR than would have been pos-
sible with MCL-SIR, while simultane-
ously requiring lower computational 

power and providing superior accuracy 
and robustness.

CGR has the additional benefit of 
naturally determining, and sampling 
more from, the degrees of freedom 
of higher uncertainty. For example, 
when the robot is traversing down a 
long hallway, the observations of the 
two walls would provide ample feed-
back to uniquely determine the ro-
bot’s orientation and its location per-
pendicular to the walls. The robot’s 
location parallel to the walls would 
be the only uncertain degree of free-
dom. By refining the particle loca-
tions using the state space gradients 

Figure 5. Histogram of errors evaluated by sparse ground truth on each map.
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of the observation likelihood func-
tion, CGR correctly distributes the 
particles more along the direction of 
the corridor than perpendicular to it.

CoBot 4, being equipped with only 
a depth sensor, used CGR with the 
plane-filtered points generated by 
Fast Sampling Plane Filtering (FSPF)4 
of the observed depth images. De-
spite the narrower field of view of the 
depth sensor compared to the laser  
rangefinder, CoBot 4 still robustly 
localized using FSPF-CGR, even in 
the presence of crowds of humans  
obstructing the robot’s sensors. 
Such robustness is largely attributed 
to the effective filtering out of non-
planar features such as the humans 
in the scene, thus minimizing the 
chances of localization failure due to 

confusing observations of unmapped 
objects.

Episodic Non-Markov Localization
EnML has been used to localize the 
CoBots since February 2014.5 Unlike 
variants of Markov Localization,18 
which ignore observations that do not 

match the map, EnML explicitly rea-
sons about correlations between robot 
poses at different time steps because of 
the observations of unmapped objects. 
This lets EnML use observations of 
unmapped static objects such as chairs 
and tables to provide relative localiza-
tion feed back while simultaneously 

Figure 6. Scatter plots of localization errors evaluated by sparse ground truth during the 1,000-km Challenge.
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Table 4. Localization accuracy by sparse ground truth for the different maps over 
the course of the 1,000-km Challenge.

Map Samples Mean error (m) Median error (m) Standard deviation (m)

GHC4 7,656 0.352 0.343 0.218

GHC5 5,123 0.394 0.400 0.181

GHC6 1,235 0.296 0.314 0.122

GHC7 17,489 0.368 0.341 0.190

GHC8 50 0.234 0.167 0.185

GHC9 276 0.464 0.402 0.232
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exploiting observations of map fea-
tures for global localization feedback.

By accounting for and using obser-
vations of unmapped movable objects, 
EnML can robustly and accurately lo-
calize the CoBots on challenging floors 
such as GHC4 and GHC5, in which 
most of the robots’ observations are of 
unmapped objects, and the unmapped 
objects occlude the robots’ view of map 
features. Such areas previously were 
not navigable autonomously; the ro-
bots would frequently get lost in them 
because of insufficient visible map fea-
tures. At the same time, EnML has dra-
matically increased the mean distance  

traversed between operator interven-
tions, from 4:79 km when using CGR 
to 8:13 km when using EnML (see  
Table 6).

Sensors
As we mentioned earlier, the CoBots 
are equipped with different sensor 
combinations. Owing to the varia-
tions in the sensing abilities, the Co-
Bots vary in their ability to handle 
different types of environments.

With the upward-facing depth cam-
era, CoBot 2 is well-suited for deploy-
ments in areas with tall chairs and 
tables. CoBot 4, with its downward-
facing depth camera, can detect small 
obstacles on the ground, such as lap-
top power adapters or cables.

The laser rangefinder, with its larger 
field of view than the depth cam-
eras, makes CoBots 1, 2, and 3 better 
adapted to deployments in open areas, 
in which the only observable features 
are often far off to the side of the ro-
bot instead of within the depth cam-
eras’ narrow field of view.

Neither the laser rangefinder nor the 
depth camera sensors on the CoBots 
are rated for use in direct sunlight. 
Thus, when the CoBots encounter  
direct bright sunlight, they occasion-
ally detect false obstacles, and the ob-
stacle-avoidance algorithm brings the 
robots to a stop.

The sensors used for localization 
on the CoBots have a limited sensing 
range and cannot observe the entire 
length of the hallway that the CoBot 
is in. Therefore, the localization al-
gorithms must reason about the un-
certainty parallel to the direction 
of the hallway. This is in stark con-
trast to a scenario in which a robot 
with a long-range sensor (such as the 
SICK LMS-200 laser rangefinder, 
with a maximum range of 80 m) can 
observe the entire length of every 
hallway (the longest hallway in the 
GHC building is about 50 m long), 

and thus can accurately compute its 
location with a single reading. The 
decision to use inexpensive short-
range sensors is motivated by cost, 
because our goal included deploying 
several CoBots, and to investigate 
algorithms robust to sensor limita-
tions. Despite the sensor range’s lim-
itations, the CoBots repeatedly stop 
at exactly the right destination lo-
cations in front of office doors and 
always follow the same path down 
hallways (when there are no obsta-
cles). In fact, in several hallways, the 
CoBots’ repeated traversal along the 
exact same paths has worn down 
tracks in the carpets.

Navigation
In our experiences with extended de-
ployment of the CoBots, we learned that 
a conservative approach to navigation  
is more reliable in the long term than 
a more unconstrained and potentially 
hazardous approach. In particular, the 
obstacle-avoidance algorithm uses a lo-
cal greedy planner,19 which assumes 
that paths on the navigation graph will 
always be navigable and can be blocked 
only by humans. As a result, the plan-
ner will not consider an alternative 
route if a corridor has a lot of human 
traffic, but will stop before the humans 
and ask to be excused. Furthermore, 
because of the virtual corridors, the 
robot will not seek to side-step obsta-
cles indefinitely. Although this might 
result in longer stopped times in the 
presence of significant human traffic, 
it also ensures that the robot does not 
run into invisible obstacles in the pur-
suit of open paths. Although many of 
the hallways have glass walls, the robot 
has never come close to hitting them, 
thanks to its reliable localization and 
virtual corridors.

System Integration
The CoBots rely on significant auto-
mation to ensure continued reliable  

Table 6. Robustness in localization on 
each map over the 1,000-km Challenge.* 

Map CGR EnML

GHC4 0.62 4.42

GHC5 — 9.49

GHC6 8.61 9.48

GHC7 5.58 9.02

GHC8 6.04 19.36

GHC9 5.33 20.05

All 4.79 8.13

*Mean distance (in km) traversed between interventions using  
Corrective Gradient Refinement (CGR) versus Episodic Non-
Markov Localization (EnML).

Table 5. Robustness in localization on 
each map over the 1,000-km Challenge. 

Map

Operator interventions per 
deployment*

0 1 2 3 >3

GHC3 14 1 0 0 0

GHC4 126 31 0 1 0

GHC5 44 6 0 0 0

GHC6 290 21 3 1 0

GHC7 2,047 77 9 2 0

GHC8 140 9 1 0 0

GHC9 156 8 0 0 0

NSH1 7 2 0 0 0

NSH2 4 0 1 1 0

NSH3 8 1 0 0 0

NSH4 66 13 0 1 0

NYU19 101 7 0 0 0

Total 3,003 176 14 6 0

*Operator interventions per deployment, listed as the number 
of deployments with 0, 1, 2, 3, and >3 interventions.
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operation. During deployments, the  
CoBots are accessible remotely via 
a telepresence interface that lets the 
research group examine the state 
of the robot from the lowest (sen-
sor) levels to the highest (task ex-
ecution) levels. When a CoBot is 
blocked for task execution because 
of lack of human responses to in-
teraction, it automatically sends 
an email to the research group, 
mentioning its latest location es-
timate, task status, and reason for 
being blocked. Figure 7 shows one 
such email; the robot had waited 
for more than 5 minutes for human 
help at the elevators.

The CoBots’ ability to proactively 
email for assistance when required has 
been invaluable on a few unexpected 
occasions. In one such instance, a 
building occupant blocked the cor-
ridor to the robot with cardboard 
boxes, which resulted in the robot 
stopping and emailing the develop-
ers for assistance. Since then, we have 
limited the robots’ maximum speed 
while passing by that office, in order 
to reduce the noise.

Log Management Automation
The CoBots record logs during every 
deployment, collecting over a giga-
byte of sensor data per hour of de-
ployment. The volume of data logs 
thus generated would understand-
ably be challenging to manage man-
ually. Instead, every robot has a 
nightly log management script that 
performs the following tasks at 4:00 
a.m. every day:

•	 compress every data log,
•	 transfer the compressed data logs 

to the central server, and
•	 if the data logs transferred success-

fully, delete the logs from the robot.

Once the data logs have all been 
transferred to the central server, they 

are further processed on the server by 
a separate log-processing script run-
ning on the server. This log-processing 
script performs the following tasks at 
5:00 a.m. every day:

•	 compute the total autonomous dis-
tance traversed for each deployment,

•	 generate a synopsis image plotting the 
robot’s trajectory over the deployment,

•	 compute localization errors over 
the deployments using StarGazer 
observations and scan matching,

•	 extract the locations and times of 
operator interventions, if any, during 
the deployments,

Figure 7. An example email from CoBot4, asking for assistance.

Figure 8. A synopsis email generated by the nightly processing script running on the 
central server. The email summarizes the results of processing the deployment logs 
from the previous day.
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•	 convert the data logs into a standard 
format such that they can be readily 
shared with researchers,

•	 generate synopses of the deployments, 
including the tasks performed and 
sensor data logged, and

•	 email a synopsis (see Figure 8) of 
the deployments to the developer.

Occasionally, a robot might fail to 
transfer its logs automatically, if it has 
a poor wireless internet connection. 
In such a case, an error log is saved 
locally, and the deployer can check 
the logs and transfer them manually.

We have presented the results 
of running the CoBots during the 
1,000-km Challenge, spanning de-
ployments over several years in varied 
environments across multiple floors 
and buildings. Despite variations and 
changes in the environments, the ro-
bots successfully autonomously tra-
versed all the public areas. 
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