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Abstract— Stereo vision is commonly used for local obstacle
avoidance of autonomous mobile robots: stereo images are first
processed to yield a dense 3D reconstruction of the observed
scene, which is then used for navigation planning. Such an
approach, which we term Sequential Perception and Planning
(SPP), results in significant unnecessary computations as the
navigation planner only needs to explore a small part of the
scene to compute the shortest obstacle-free path. In this paper,
we introduce an approach to Joint Perception and Planning
(JPP) using stereo vision, which performs disparity checks
on demand, only as necessary while searching on a planning
graph. Furthermore, obstacle checks for navigation planning
do not require full 3D reconstruction: we present in this paper
how obstacle queries can be decomposed into a sequence of
confident positive stereo matches and confident negative stereo
matches, which are significantly faster to compute than the
exact depth of points. The resulting complete JPP formulation is
significantly faster than SPP, while still maintaining correctness
of planning. We also show how the JPP works with different
planners, including search-based and sampling-based planners.
We present extensive experimental results from real robot
data and simulation experiments, demonstrating that the JPP
requires less than 10% of the disparity computations required
by SPP.

I. INTRODUCTION

Existing approaches to local obstacle avoidance using
stereo vision (e.g., [1], [2]) perform sequential perception
and planning (SPP), where input stereo images are processed
to compute the disparity at each pixel. Such dense disparity
is then used to infer depth for all image points, and
hence obstacles in the world. However, the input images
often include visual information that is irrelevant to the
planning task at hand, thus wasting computational time at
the perception step in SPP.

In this paper, we introduce a novel approach to joint
perception and planning (JPP) for obstacle avoidance
using stereo vision that eliminates unnecessary disparity
computations. JPP treats traversability queries by the path
planner as on-demand disparity checks for perception. Thus,
the only disparity computations performed by perception
are those necessary for planning for the obstacle avoidance
task. We further simplify the problem of identifying
reachable configurations of the robot by verifying confident
positive disparity matches for the ground plane around
the configuration pose, and by verifying confident negative
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Fig. 1: Given a graph (grey lines) for planning, Joint Preception
and Planning checks query edges for traversability by verifying the
existence of the ground plane (green point), and the absence of
obstacle surfaces for all points up to the height of the robot (blue
points). All such points are first projected on to the stero images,
and the disparity cost computed for the projected pairs. Existence
is verified by checking if the disparity cost is < ε+, termed the
confident positive check, and absence is verified by checking if the
disparity cost is > ε+, termed the confident negative check.

disparity matches for all points within the robot’s safety
radius and height of that pose. Verifying confident positive
and negative checks are significantly computationally faster
than evaluating the exact depth: while a confidence check
requires only a single disparity comparison, evaluating the
exact depth requires multiple disparity comparisons along
the epipolar line. The resulting obstacle checks are still
exact: reachable and unreachable configurations of the robot
are still correctly identified, albeit at a significantly lower
computational cost. Figure 1 illustrates the decomposition of
JPP into on-demand confidence disparity checks.

We empirically demonstrate JPP with an A* planner, and
an RRT planner for local obstacle avoidance. Over extensive
experimental evaluations, we show that JPP requires less
than 10% of the disparity comparisons required by SPP.
The contributions of this paper are thus three-fold: 1) We
contribute a JPP formulation to integrate obstacle avoidance
planning with on-demand stereo perception; 2) We present
an exact simplification of the configuration-space obstacle
check into a sequence of confidence checks over disparity;
and 3) We empirically show that the JPP formulation
results in substantial computational cost savings on a real
robot. Finally, we also provide the full C++ source code
implementation of JPP 1.

1Source Code: https://github.com/umass-amrl/jpp
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II. RELATED WORK

Obstacle avoidance, as an essential ability of autonomous
mobile robots, has been researched in great detail, and
there exist a number of approaches, with various planning
algorithms (e.g., [3], [4], [5]), sensor modalities (e.g., [6],
[7]) and efficient collision detection based on adaptive cell
decomposition of the robot configuration space [8]. We thus
focus on the related work most relevant to our own, covering
existing approaches to obstacle avoidance using vision.

Vision based obstacle avoidance approaches can be
broadly classified into monocular and stereo approaches.
Approaches for obstacle detection using monocular vision
include learning based methods [9] and using optical
flow [10]. Appearance-based obstacle detection [11] and
visual sonar [12] have also been shown to be effective for
indoor ground robots.

Most stereo vision based approaches [2], [13] perform
either local epipolar matching or a global disparity
optimization. Recognizing the significant computational cost
of dense stereo reconstruction, a few recent methods [14],
[15] have tried to reduce computation time by doing sparse
disparity checks. In Pushbroom Stereo [15], obstacles are
detected only at a constant disparity level, and by integrating
this information with an onboard IMU and state estimator,
positions of obstacles at all other depths are recovered.

For a different problem of affordance based planning
and a different sensor modality of LIDAR, joint perception
and planning [16] has been shown to successfully reduce
combined planning and perception time by limiting
perception to only areas considered by the planner.

While there have been partial informative approaches [15]
to obstacle avoidance using stereo vision, and joint
perception and planning in other domains and with sensor
modalities [16], in this paper we contribute a joint perception
and planning approach for the task of obstacle avoidance
using stereo vision, where we avoid unnecessary full 3D
reconstruction, and further relax the problem of checking
reachable configurations into confidence disparity matching.

III. REVIEW OF EPIPOLAR GEOMETRY

We use the left camera of the stereo pair as the sensor
reference frame. Given a visible 3D point X in the reference
frame of the left camera, let p and p′ be its projection in the
left image and right camera images, respectively. Point X ,
the image points p and p′ (on the image planes), and the
camera centers are coplanar. This is known as the epipolar
constraint. For an image point p in the left image, there exists
a corresponding epipolar line l′ in the right image on which
p′ is constrained to lie. Similarly l is the epipolar line in
the left image corresponding to the right image point p′.
Hence, when only one of the two image points is known,
the corresponding point in the other image can be found by
searching along its epipolar line, resulting in a 1-D search.

Stereo camera calibration yields the left and right camera
instrinsic matrices, K and K′ respectively; and the rotation
R, and translation t from the left camera frame to the right

camera frame, also known as the extrinsic parameters. The
3× 4 projection matrices P and P′ are defined as

P = K
[
I 0

]
, P′ = K′

[
R t

]
(1)

where I denotes the 3 × 3 identity matrix. Then p = PX
and p′ = P′X in homogeneous coordinates.

Obstacle avoidance path planning is performed in the
reference frame of the robot, where the origin coincides
with the center of rotation of the robot projected on to
the ground plane. Hence we find a transformation from the
sensor reference frame to the robot reference frame. Let Rw

and tw denote the rotation and translation matrices of this
transformation. Therefore X in the robot reference frame is
expressed as Xw = RwX + tw.

For dense stereo reconstruction, the depth of an image
point is estimated by finding its correspondence along the
epipolar line in the other image. In a rectified image
coordinate system, the epipolar lines become horizontal scan
lines. The horizontal shift or the difference in x-coordinate
of two corresponding points in rectified coordinates is thus
the disparity. Depth and disparity are related as d = fB

z
where d is the disparity, z is the depth of the point from the
reference camera, f is the focal length of the camera, and
B is the stereo baseline.

IV. JOINT PERCEPTION AND PLANNING

Unlike Sequential Perception and Planning (SPP), Joint
Perception and Planning (JPP) performs a series of sparse
stereo correspondence checks based on traversability queries
from the local path planner. The queries are to check if a
robot pose is reachable. We explore both sample-based, and
search-based path planning algorithms in the context of JPP.

Let X ⊂ R2 denote the robot configuration space, which
is a set of robot poses 〈x, y〉 ∈ R2. We omit the orientation
of the robot in this work, assuming that the robot can turn
in place if ncessary. We partition X into two sets Xfree and
Xobs, where Xfree denotes the set of poses reachable by the
robot and Xobs denotes the set of poses not reachable by
the robot. We define points belonging to the ground plane
as those points (x, y, z) ∈ R3 such that z = 0. The robot
safety radius is denoted by r. Any pose 〈x, y〉 ∈ Xfree if all
the points in the set Pr = {(x′, y′, 0) : (x − x′)2 + (y −
y′)2 < r2} are classified as ground plane and additionally
the set Ph = {(x′, y′, z) : 0 ≤ z ≤ h, (x′, y′, 0) ∈
Pr} contains only unoccupied points, where h is the robot
height. Otherwise 〈x, y〉 ∈ Xobs. Algorithm 1 outlines the
procedure to check if a pose is reachable or not. The
verification of 3D points belonging to the ground plane is
done using confident positive matching while verification of
points which are unoccupied in space is done using confident
negative matching.

The local path planner explores a directed graph G =
〈V,E〉 on the configuration space, where V ⊂ Xfree denotes
the set of vertices and E denotes the set of edges.

Search-based Planning. The configuration space is
discretized into a square grid of cell size s. The neighbors of
any node v = 〈x, y〉 are Nv = {〈x+s, y+s〉, 〈x+s, y〉, 〈x+
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s, y−s〉, 〈x, y−s〉, 〈x, y+s〉}. Any pose p = 〈x, y〉 is added
to V if p ∈ Nv for some v ∈ V and REACHABLEPOSE(p)
outlined in Algorithm 1 is true. We have presented results
for JPP with A* search in this paper.

Sampling-based Planning. We have implemented JPP
with RRT as an instance of sampling-based planning. A
uniform sampler with a goal bias b samples a new pose
p ∈ X in the configuration space. From V we find a pose
q such that ‖p− q‖ is minimum (‖ · ‖ denotes Euclidean
distance). Then a steering function STEER : (p, q) 7→ m
returns a pose m ∈ X in the direction of p from q at distance
of step size s. Let L(q,m) denote the set of all poses lying
on the edge joining q and m. m is added to the set of vertices
V if L(q,m) ⊂ Xfree. Formally, (q,m) is a valid edge if for
all n ∈ L(q,m), REACHABLEPOSE(n) is true.

In both instances of the planning algorithms, edges of
the planning graph are validated by performing on-demand
confidence matching which is described in the next section.

V. ON-DEMAND STEREO

Let P and P′ (Equation 1) be the projection matrices in
the rectified coordinate system of the left and right cameras
respectively. Therefore any 3D point X (represented as a
3×1 matrix) in the robot reference frame is first transformed
into the left camera reference frame as

Xl = R−1w (X − tw) (2)

and then Xl is projected as image points p and p′ in the
rectified stereo images I and I ′, where p = PXl and p′ =
P′Xl (in homogeneous coordinates). Given two image points
p(u, v) and p′(u′, v′) in the rectified stereo images I and I ′,
we define the SAD cost function as

C(p, p′, w) =
∑

q∈τ(p,w)
q′∈τ(p′,w)

|D(q)−D(q′)| (3)

where τ(p, w) is a window of pixels of size w×w centered
around the point p and similarly τ(p′, w) is defined around
p′. D denotes the pixel descriptor of an image point. For our
implementation we used the DAISY descriptor [17].

In SPP, given any point p in the left image I , its disparity
d is determined by finding the best corresponding match in
the right image I ′ by scanning along the epipolar line and
finding a point q such that C(p, q, w) is minimum over the
epipolar line. Formally

d = argmin
d∈D

C(p(u, v), q(u− d, v), w) (4)

where D = [0, dmax−1] is the set of possible disparity values
of p. Disparity refinement is done using left-right consistency
checks, and low confidence matches are neglected using
a threshold on the ratio of cost of the top two disparity
candidates. This reference local disparity matching algorithm
for SPP is used to compare paths with JPP. However, in JPP,
instead of attempting to find the exact disparity of a point, we
are interested in checking whether the point is on the surface
of an obstacle as verified by a confident positive match, or
whether the point is not on the surface of an obstacle, as
verified by a confident negative match.

A. Confident Positive Matching

A visible 3D point X ∈ R3 under consideration of
the obstacle avoidance planner is first projected on to its
corresponding rectified image coordinates p and p′. The
confident positive match verifies the occupancy of the point
X . To do this we need to verify that p and p′ are valid stereo
correspondences. A function L+(X) used to label point X
is defined as

L+(X) =

{
1, if C(p, p′, w) ≤ ε+

0, otherwise
(5)

where ε+ is a constant associated with points classified
as ground plane. ε+ = 1.1 is found experimentally, and
it depends on the length of the descriptors, and the SAD
window size. A confident positive match is valid if L+(X) =
1 and invalid if 0. We use confident positive matching to
verify points belonging to the ground plane. To increase the
robustness of the confident positive matching, we apply a
spatial filter around X to remove noisy estimates. We select
a discretized window W with grid size wx around X and
count the number of points X ′ ∈W such that L+(X

′) = 1.
Formally let nx =

∑
X′∈W L+(X

′). If nx > cxn(W ),
where cx denotes the spatial filter threshold and n(W )
denotes the cardinality of the set W , then we let L+(X) = 1
otherwise L+(X) = 0. Experimentally, for best results we
set W = 5 cm× 5 cm, wx = 10 mm, cx = 0.75.

B. Confident Negative Matching

Confident negative matching is used to verify that a 3D
point X ∈ R3 is unoccupied. The procedure is almost similar
to that of confident positive matching. First X is projected
into corresponding rectified image point coordinates p and
p′. Then a function L−(X) used to label point X is defined
as

L−(X) =

{
1, if C(p, p′, w) ≥ ε−

0, otherwise
(6)

where ε− is a constant associated with unoccupied points.
ε− = 0.5 is found experimentally, and it also depends on the
length of the DAISY descriptors, and the SAD window size.
X is classified as unoccupied if L−(X) = 1 and as occupied
if L−(X) = 0. We use the confident negative checks to
verify that a column of points above a 3D point (classified
as ground plane) is unoccupied i.e., it does not contain any
obstacle. The column of points will be unoccupied if for all
points X belonging to that column, L−(X) = 1. If for some
X , L−(X) = 0 then it is not an unoccupied column. It is
important to note here that ε+ 6= ε−. A similar spatial filter
is also implemented for confident negative matching.

C. Reachable Poses

Using the definitions of confident positive and negative
matching we can classify any pose 〈x, y〉 ∈ X as reachable
or not reachable by the robot. Algorithm 1 outlines the
procedure for the classification. The general idea of this
algorithm is that for any pose 〈x, y〉 to be reachable by the
robot, the set of 3D points points {(x′, y′, 0) : (x − x′)2 +
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TABLE I: JPP parameters for experimental results

Name Symbol Domain Value
State space grid cell size s > 0 5 cm
RRT goal bias b (0, 1) 0.6
Conf. positive threshold ε+ > 0 1.1
Conf. negative threshold ε− > 0 0.5
Spatial filter window size wx > 0 10 mm
Spatial filter threshold cx (0, 1) 0.75

(y − y′)2 < r2} (in the robot reference frame) need to be
verified as points belonging to the ground plane by confident
positive checks. Additionally, the column of points starting
from (x′, y′, 0) up to the robot height h i.e., up to (x′, y′, h)
should be verified as unoccupied by using the confident
negative matching. r denotes the safety radius of the robot.

We consider two scenarios of the world: (1) convex world
(2) non-convex world. In a convex world if any point
P (x, y, z) is unoccupied then the set of points {P ′(x, y, z′) :
0 ≤ z′ ≤ z} are also unoccupied. In such a case lines
11-16 in Algorithm 1 are not required i.e., the confident
negative matching is omitted. Omitting the extra confident
negative checks speeds up JPP, but such simplification is
only reasonable in environments without obstacles with
overhanging parts. Table I lists the values of the parameters
used by JPP for our experimental results.

Algorithm 1 Check if pose p is reachable by the robot

1: procedure REACHABLEPOSE(p(x, y))
2: w ← robot width
3: l← robot length
4: h← robot height
5: r ← max(w2 ,

l
2 ) . robot safety radius

6: Pr ← {(x′, y′, 0) : (x− x′)2 + (y − y′)2 < r2}
7: for each P ∈ Pr do
8: if L+(P ) == 0 then
9: Xobs ← Xobs ∪ {p}

10: return false
11: else
12: Ph ← {(Px, Py, z) : 0 ≤ z ≤ h}
13: for each P ′ ∈ Ph do
14: if L−(P ′) == 0 then
15: Xobs ← Xobs ∪ {p}
16: return false
17: Xfree ← Xfree ∪ {p}
18: return true

VI. EXPERIMENTAL RESULTS

We performed two sets of experiments to 1) evaluate
the computational cost of JPP compared to SPP, and 2) to
compare the path length of obstacle avoidance as evaluated
by online JPP compared to an offline, high-resolution dense
SPP as a reference baseline. In both experiments, we
compared results using obstacle avoidance planning using
both A* as well as an RRT planner. The first set of
experiments were performed in simulation as well as on a
real robot, a Clearpath Jackal UGV (Figure 2), equipped with
two PointGrey Blackfly IMX 249 cameras, Kowa LM6HC

lenses, and an Intel NUC for onboard processing. Over all
experiments, the rectified stereo image resolution was scaled
to 320× 200 pixels. The grid cell/step size was set to 5cm.

Fig. 2: Clearpath Jackal UGV robot used for real-world
experiments.

A. Computational Efficiency

Simulation Tests. We created a simulator that spawns
random obstacles in front of a robot equipped with stereo
cameras. The obstacles were in the shape of cylinders with
a fixed radius and height. We assumed a world size of 6m
x 6m. 100 obstacles with base radius of 8cm and height of
40cm were spawned randomly in each simulation. In each
simulation, we set an end waypoint of 2m ahead of the robot
center. We ran 46,000 simulations each for RRT and A*, and
logged the total number of disparity cost computations (SAD
checks) for both convex and non-convex world scenarios.
The goal of this experiment was to compare JPP with SPP
and evaluate the number of disparity cost computations. This
experiment was also designed to find experimental bounds on
the number of computations required for different planners.
The number of computations required by SPP is a constant
for every simulation since it reconstructs a dense 3D scene
by a local cost aggregation method (2560000 for an image
resolution of 320 x 200 with a maximum allowable disparity
of 40 pixels). The computations required by the planner is
negligible compared to computations for full reconstruction.
We plotted the number of computations taken by JPP as
a fraction of computations by SPP with the x-axis as the
path length. Figure 3 shows that for A* in simulation, the
fraction of computations is less than 0.9% for the non-convex
scenario and less than 0.2% for the convex scenario. For RRT
the numbers are 10% and 2% respectively. Figure 4 shows
a cumulative histogram of the fraction of the computations.
We thus verify our hypothesis from these figures and also
conclude that the complexity of JPP is a function of the
complexity of the path planner.

Real World Tests. We used the Jackal to verify the bounds
found in simulation and test robustness on detecting and
avoiding obstacles in real world. The tests were done both for
non-convex and convex world assumptions. Figures 3 and 4
clearly show that the number of computations required in real
world is within the simulation bounds. For A*, the numbers
are 0.7% (non-convex world) and 0.2% (convex world). For
RRT the numbers are 7% and 2% respectively. Figure 6
shows that our method is robust and efficient in detecting
obstacles and planning safe paths around them. Figure 6
also verifies that only sparse disparity checks (L+ and L−)
are required for obstacle avoidance. We also deduce visually
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Fig. 3: Fraction of total disparity computations of JPP compared to
SPP, vs. Path Length. Top: A* planner. Bottom: RRT planner. Red
and blue points are from real world data while purple and green
are from simulation. The number of computations is expressed as
a fraction of that required by SPP. CW: convex world. NCW:
non-convex world. S: simulation. R: real world.

that the number of computations varies based on the type
of planner we use. From the plots, we can deduce that RRT
does 10x more computations than A*.

B. Path Quality

To evaluate the quality of paths generated by JPP, we
compared them to reference paths generated offline by SPP
from dense 3D reconstructions on high resolution images
of resolution 1920 × 1200 pixels. Note that the reference
paths are indicative of the highest possible quality that can
be generated from stereo vision, and cannot actually be run
in real-time due to their significant computational cost: they
require more than 2 minutes to generate per frame. We use
the Hausdorff distance H to compare two paths P1 and P2.
H is defined as

H(P1,P2) = max
p∈P1

(min
q∈P2

(‖p− q‖)) (7)

where p and q are points that make up the paths P1 and
P2. Figure 5 shows a cumulative histogram of the Hausdorff
distances for both RRT and A*. From the histogram we see
that the paths generated by JPP and from high resolution 3D
reconstruction are comparable as more than 80% of the cases
have a Hausdorff distance of less than 0.6m.

The computational complexity of JPP is invariant of image
resolution as the number of disparity checks is guided by the
path planning algorithm. Recall that we project a 3D point in
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Fig. 4: Cumulative histogram of the fraction of disparity
cost computations compared to SPP. Top: A* planner. Bottom:
RRT planner. CW: convex world. NCW: non-convex world. S:
simulation. R: real world.
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Fig. 5: Hausdorff distance of paths generated by online JPP,
compared to offline high-resolution dense SPP reconstruction.

the robot reference frame into two image points and perform
confidence matching only. In SPP we are forced to work with
low resolution images since 3D reconstruction is expensive
for high resolution images. We take advantage of this fact,
to perform more confident and robust disparity checks using
SAD with a bigger window size on higher resolution images,
and utilize the saved computation time.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel joint perception
and planning (JPP) algorithm for obstacle avoidance using
stereo vision. We showed experimentally that the JPP
requires significantly fewer computational resources, while
still maintaining high path quality. Since the total number of
SAD disparity cost checks in JPP is invariant of the image
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Fig. 6: Joint perception and planning on the real-world dataset collected at the Autonomous Mobile Robotics Laboratory, UMass
Amherst. Row 1: A* planner. Red curves indicate the explored planning graph, blue curve indicates the path planned. Row 2: Confident
positive/negative matching visualizations. Green points belong to the ground plane which are found by confident positive checks, red points
indicate configurations not reachable by the robot. Yellow points represent the unoccupied points found by confident negative matching.
Row 3 and 4: RRT planner. The colour coding is same as that of A*. It is evident from these visualizations that JPP performs sparse
disparity checks as compared to dense reconstruction. Note that RRT performs more dense checks than A*.

resolution, analysis of the number of disparity computations
as a function of the planning problem is a promising direction
for future work.
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